2025-05-11 01:08:07
從原理上和應用上出發,可以歸納出流態化動態冰蓄冷技術相對于傳統的冰球、盤管式靜態冰蓄冷技術的如下一些技術優勢:(1)傳熱效率高、制冰速度快。動態制冰過程中不但避免了因冰層聚集而引起的導熱熱阻,還通過強制對流大幅度提高了系統的整體換熱性能,從而提高了制冰速度。(2)制冷系統COP高、能耗降低。其制冷蒸發溫度可以保持在-5℃~-8℃之間,而且在整個蓄冰過程中保持穩定不下降。相對于冰球、盤管式冰蓄冷中-10℃以下的蒸發溫度(而且隨著蓄冰量的增加逐漸下降)可以明顯提高系統COP。冰蓄冷機組夜間制冰時冷凝溫度降低8-10℃,壓縮機功耗減少15%。四川冰片滑落式動態冰蓄冷空調
需要指出的是,這種刮刀擾動式動態制冰技術中的刮刀所起的作用是及時清理換熱壁面附近的過冷水,而非像一些傳統制冰機那樣用于刮除已經生長在換熱壁面上的冰層。因此這種制冰方式也避免了因冰層熱阻引起的傳熱惡化,而且還因為刮刀葉片的強烈擾動而大幅強化了對流換熱效果。刮刀擾動式動態制冰技術中較主要的技術仍然是防堵塞技術。由于刮刀擾動十分強烈,過冷狀態下的水溶液非常容易在換熱壁面上結晶,一旦在壁面上結晶,刮刀葉片就面臨被堵塞甚至被打碎的可能。中山冰片滑落式動態冰蓄冷動態冰蓄冷利用低谷電價時段制冰儲能,高峰時段融冰供冷,降低40%空調能耗。
冰蓄冷技術是利用夜間電網低谷時間,將冷媒(通常為乙二醇的水溶液)制成冰將冷量儲存起來,白天用電高峰期融冰,將冰的相變潛熱用于供冷的成套技術。這種蓄能措施能夠有效地利用峰谷電價差,在滿足終端供冷(熱)需要的前提下降低運行成本,同時對電網的供需平衡起一定的調節作用。公共建筑耗能遠高于民用建筑,由于工作時間的限制,電能消耗主要集中在白天,導致用電高峰期電力緊張,但是夜晚低谷期電力不能得到充分利用。為了轉移電力需求,平衡電力供應,**采用分時計價的政策來推動離峰電力的積極性。冰蓄冷空調利用夜間低谷電力制冰儲能以減少用電高峰期空調用電負荷和系統裝機容量。從建筑層面上,冰蓄冷技術不一定能降低電耗,但是可以利用峰谷電價差值節約用電成本。而從**整體層面上,冰蓄冷系統能夠對供電系統進行“移峰填谷”,解決夜晚低谷期電力浪費問題。
系統組成:制冰設備模塊、蓄冰(蓄熱水)設備模塊、功能連接設備模塊、余熱利用制熱水設備模塊、智能控制控制模塊。采暖季節可轉換到利用低谷電制 45℃以上采暖熱水,滿足建筑物采暖需要。常用空調蓄冷技術根據蓄冷介質,可分為水蓄冷(顯熱式)、冰蓄冷和共晶鹽蓄冷系統三大類。每一大類可分為多個小類。水蓄冷系統就是利用水的顯熱進行蓄冷和釋冷(水的比熱容為4.18kJ/kg℃)。在蓄冷階段,制冷機制出的冷凍水放入蓄冷槽儲存,在釋冷階段,將冷凍水抽出使用以滿足空調負荷需要。夜間蓄冰時段機組效率提升15%,綜合COP達5.3。
工藝流程,動態冰蓄冷技術可應用于新建系統以及既有系統的節能改造。新建系統需要根據冷量輸送需求進行全新設計,其它過程相同,包括根據制冷機組的額定功率搭配制冰機組;根據負荷情況合理配置蓄冰槽,并根據應用場合配置不同的控制系統。傳統的蓄能形式是將蓄能介質固定在塑料球內或固定在盤管外,蓄能放冷全程處于靜止狀態,俗稱靜態蓄冰。動態蓄冰制冰與儲冰時間與空間分離,制冰由制冰機組在蓄能槽外生產成冰漿,再由管道輸送至蓄能槽內,全程處于流動狀態,俗稱動態蓄冰。動態系統減少制冷劑充注量40%,符合環保法規要求。上海速凍庫動態冰蓄冷裝置
區域能源站配置10萬m?冰蓄冷,供冷覆蓋半徑達5km。四川冰片滑落式動態冰蓄冷空調
刮刀擾動式動態制冰技術,刮刀擾動式動態制冰技術的基本原理是:水(溶液)在換熱器內部通過換熱壁面被冷卻到低于冰點的過冷狀態,由于刮刀以較快的回轉速度旋轉,靠近換熱器換熱壁面的過冷水被及時刮離壁面,從而確保了換熱器壁面上不會生成冰晶,如圖3所示。從壁面附近被刮出的過冷水隨即進入水側的中心主流區,并在主流區中經已經存在的冰晶顆粒促晶解除過冷,生成冰漿。與過冷水式相比,刮刀擾動式動態制冰系統無需過冷卻解除裝置。四川冰片滑落式動態冰蓄冷空調